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We can use formal methods to verify that systems compose correctly 
without the possibility of incorrect behavior. 

This means exhaustively checking that System A’s postconditions agree 
with System B’s preconditions. If so, it is safe to compose.

Normal Setting: Every computational path must be accounted for and 
checked. Verification cost (time) is multiplicative across systems.
•

Cost = |S1| × |S2 | ×  …  × |Sn|

Challenge: Formally Verifying System Composition

Outputs: Model Inputs: Model
(properly trained)

Postcondition Precondition
System A:

Train ML Model

System B:

Classify Points
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Zero-knowledge proofs (ZKPs) can be used to provide type checking 
guarantees of input/output properties without exposing secrets.
Verification can be done modularly so that the cost is additive.

Cost = |S1| + |S2| + … + |Sn|

Bad proofs and inputs can still exist, but now are cryptographically 
(exponentially) hard to find and exploit.

Solution: Assuring Safe Composition via zkSNARKs

ZKP 
Verifier

Outputs: Trained model Inputs: Trained model
Postcondition Precondition

zkSNARK proving model is valid

System A:

Train ML Model

System B:

Classify Points
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Preconditions and Postconditions with Types
Type MLModel =
 (w : Weights, error(w) < 0.05, log : AuditLog, execute(log) == w)
trainModel : (x : [Input]) -> MLModel

We can generate proofs (or an audit log) of desired properties (e.g. functional 
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually 
trained on actual data and are within a certain error threshold can be used by a 
classifier.

The audit log and its proof would be huge. Instead, we can use a super small 
zkSNARK to prove this dependent type and pass it along instead. We only need to 
handle the case where the check fails.

classifyPoint : (y : Input, model : MLModel) -> Class
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Preconditions and Postconditions with Types
Type MLModel =
 (w : Weights, error(w) < 0.05, log : AuditLog, execute(log) == w)
trainModel : (x : [Input]) -> MLModel

We can generate proofs (or an audit log) of desired properties (e.g. functional 
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually 
trained on actual data and are within a certain error threshold can be used by a 
classifier.

The audit log and its proof would be huge. Instead, we can use a super small 
zkSNARK to prove this dependent type and pass it along instead. We only need to 
handle the case where the check fails.

classifyPoint : (y : Input, model : MLModel, verif : ZKPVerifier) -> IO Class

zkp : ZKP
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Dependent Type Replacement by ZKPs
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Benefits & Capabilities
Using zero-knowledge proofs, we can combine cyber systems while 
preventing certain incorrect and malicious behaviors relating to 
mismatched outputs and input constraints.

Portable proofs artificially  
extends our trusted 
computing base beyond 
just our own system

ZKPs give fine-grained 
control over which bits of 
information to keep 
secret and which to prove

ZKPs enforce system 
compatibility without the 
expense of manually 
proving correctness
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Functional Gadget Library

Implementation Summary

We developed a library of 
zkSNARK gadgets and types 

in C++ using Libsnark

We developed a custom compiler 
in Haskell to apply functional 

programming techniques to 
zkSNARK development 

We produced a demo 
dependently-typed zkSNARK 
application for RSA encryption 

and verification 

Prototype Compiler Type Checking Demo

DSL Flattener

Custom Domain Specific Language

Type Extractor

Libsnark

Map, ZipWith, Fold, ...

Large Integer Math

RSA Components

Primitive Operations
Circuit 

Generator
Haskell 

Generator

C++ Gadget 
Generator

Zero-Knowledge RSA 
Encryption Application

Zero-Knowledge RSA Verifier 
and Multiplier Application

Application Communication 
Utility Scripts
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Demo:
Verifying an RSA Encryption 

Pipeline
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Background: RSA Cryptography

RSA is multiplicatively (×) homomorphic, meaning that if we encrypt two messages 
with the same key and modulus, the multiplication of those two ciphertexts equals 
the encryption of the multiplication of the plaintexts

Encryption:

Decryption:
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Demo: RSA Encryption Pipeline

Prog A’s Output
c1, c2, modulus

m1=7
m2=5 

Enck(35)

Program A Program B

ENC

ENC
N=pq

Input Prog B’s Output:
Encrypted product

MULT

Sample Pipeline
1. Program A encrypts two secret messages using RSA
2. Program B receives encrypted messages and multiplies them

Challenge
If we implement A and B in Haskell, program B can’t guarantee it is multiplying 
valid RSA ciphertexts. B could end up yielding garbage and would be an error a 
type checker could catch IF it could see everything 1) only discoverable at runtime 
and 2) under the covers of encryption.



  12

Demo: Encryption Pipeline with Type Checking ZKPs

Prog A’s Output
c1, c2, modulus

m1=7
m2=5 

Enck(35)

Program A Program B

ENC

ENC
N=pq

ZKP Type 
Verifier

Input Prog B’s Output:
Encrypted product

ZKP Type Checking Pipeline

Regular Computation

ZKP Type
Prover

MULT
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Demo: Proving Type Checks with ZKPs

We can encode this proof as the type ValidRSAPair above, and generate a 
zkSNARK that proves type compliance using our compiler toolchain.

We can use Type-Level Haskell to generate redacted and un-redacted types, so 
type information is not lost between function calls, but sensitive information is not 
present.

type ValidRSAPair = 
EncRSA(key, modulus, message1) == cipher1 
and 
EncRSA(key, modulus, message2) == cipher2

Haskell’s type checker can’t verify the encrypted variable’s type until program 
runtime. Instead, we instruct it to know to ask for a ZKP of its type later.
Example. Type for a valid pair of RSA ciphertexts
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A function to Illustrate Homomorphic Property

encryptMessagePair :: 
Length 
-> Message 
-> Message 
-> PublicKey 
-> Modulus 
-> IO (Redacted RSAPair)

This function encrypts two messages with the same key and modulus, and returns 
them along with the bit width.

The decrypt function relies on the fact that the two supplied ciphertexts are encrypted 
with the same key and modulus.

multiplyPair ::  
IO (Redacted RSAPair) 
-> PrivateKey 
-> Integer 
-> Message
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Demo: Unredacted Pair Multiplier 

multiplyPair ::  
(Length, Message, Message, Key, Mod, CipherText, CipherText) 
-> PrivateKey 
-> Integer 
-> IO Message
multiplyPair r@(bits,m1,m2,pubKey,modulus,c1,c2) = do
  verifyZKP r
  prod <- (c1 * c2) `mod` modulus
  return prod 

A non- redacted multiplication function input reveals sensitive  information
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Demo: Unredacted Pair Multiplier  

multiplyPair ::  
(Length, Message, Message, Key, Mod, CipherText, CipherText)  
-> PrivateKey 
-> Integer 
-> IO Message
multiplyPair r@(bits,▓▓,▓▓,▓▓▓▓▓▓,▓▓▓▓▓▓▓,c1,c2) = do
  verifyZKP r
  prod <- (c1 * c2) `mod` modulus
  return prod 

The redacted information is simply not available when passed as an input.
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Demo: Redacted Pair Multiplier  

multiplyPair ::  
Redacted RSAPair
-> PrivateKey 
-> Integer 
-> IO Message
multiplyPair r@(bits,_,_,_,_,c1,c2) = do
  verifyZKP r
  prod <- (c1 * c2) `mod` modulus
  return prod 

The redacted information is simply not available when passed as an input.
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type family RetType a where

          GetParam RSAPair = 

               (Int, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer)

instance Name RSAPair where

getName _ = "RSAPair"

type family GerReturna where

  GetReturn RSAPair =

ValidRSAPair 
(bitLen  : CInt ,
 m1      : BitString bitLen, 
 m2      : BitString bitLen,
 key     : Bitstring bitLen,
 modulus : BitString bitLen, 
 c1      : BitString bitLen,
 c2      : BitString bitLen )
-> Bit 
And
  (Eq 
    EncRSA(key, modulus, m1) 
    c1) : BitString bitLen
  (Eq 
    EncRSA(key, modulus, m2)
    c2) : BitString bitLen

Full Compiler Pipeline

ValidRSAPair 

(bitLen  : CInt ,

 m1      : BitString bitLen, 

 m2      : BitString bitLen,

 key     : Bitstring bitLen,

 modulus : BitString bitLen, 

 c1      : BitString bitLen,

 c2      : BitString bitLen )

-> Bit 

Let 

  rsa1 = EncRSA(key, modulus, m1) 
: BitString bitLen 

  eqc1 = Eq rsa1 c1 : Bit

  rsa2 = EncRSA(key, modulus, m2) 
: BitString bitLen 

  eqc2 = Eq rsa2 c2 : Bit

And eqc1 eqc2 : Bit

ValidRSAPair : (Integer

Priv Bitstring Integer, 

Priv Bitstring Integer, 

Priv Bitstring Integer, 

Priv Bitstring Int, 

Bitstring Int, 

Bitstring Int) 

Custom Domain 
Specific 

Language

Type Description 
for ZKP

Type-Level Haskell

Flattened Language Circuit Representation Libsnark Gadgets

DSL 
Flattener

Type Extractor Haskell Generator

Circuit 
Generator

C++ 
Gadget 

Generator
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Conclusion 

By using zkSNARKs to prove that values have 
specific dependent types, it is possible to 
provably assure compatibility and correctness 
without revealing sensitive information and 
extend our trusted computing base well beyond 
our own system.

The approach we developed expands the scope 
of what non-interactive zero-knowledge proofs 
can capture to include properties about both the 
execution and correctness of programs
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Future Work

I. Increase the extent of Haskell language integration to enforce verification on 
a programming language level rather than trusting programmers to run the 
verifier binaries externally.

II. Leverage approach to work with several ongoing efforts at LANL to help verify 
mission-relevant cyber systems that utilize sensitive information

III. Build more advanced compiler automation to automatically integrate 
type-level haskell and compile libsnark programs to allow faster development 
times.

IV. Build optimization steps to reduce number of gates into the compiler, and 
optimize existing gadgets.

V. Increase the expressivity of the language to include ZKPs for uncertainty 
measures and machine learning model properties developed by fellow 
LANL student, Zachary DeStefano (A-4). 
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Questions?

dbarrack@lanl.gov
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Backup
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type family RetType a where

          GetParam RSAPair = 

               (Int, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer, 

                Bitstring Integer)

instance Name RSAPair where

getName _ = "RSAPair"

type family GerReturna where

  GetReturn RSAPair =

Full Compiler Pipeline

ValidRSAPair : (Integer

Priv Bitstring Integer, 

Priv Bitstring Integer, 

Priv Bitstring Integer, 

Priv Bitstring Int, 

Bitstring Int, 

Bitstring Int) 

Custom Domain 
Specific Language

Type Description 
for ZKP

Type-Level Haskell

Flattened Language Circuit representation Libsnark Gadget

Flattener

Type Extractor Haskell Generator

Circuit 
Generator

C++ 
Generator
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Demo: Flattened Language Example
ValidRSAPair 
(bitLen  : CInt ,
 m1      : BitString bitLen, 
 m2      : BitString bitLen,
 key     : Bitstring bitLen,
 modulus : BitString bitLen, 
 c1      : BitString bitLen,
 c2      : BitString bitLen )
-> Bit 
Let 
  rsa1 = EncRSA(key, modulus, m1) : BitString bitLen 
  eqc1 = Eq rsa1 c1 : Bit
  rsa2 = EncRSA(key, modulus, m2) : BitString bitLen 
  eqc2 = Eq rsa2 c2 : Bit
And eqc1 eqc2 : Bit
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Demo: Circuit Example 
ValidRSAPair<FieldT> 
(bitLen  : Int,
 m1      : pb_variable_array<FieldT>, 
 m2      : pb_variable_array<FieldT>,
 key     : pb_variable_array<FieldT>,
 modulus : pb_variable_array<FieldT>, 
 c1      : pb_variable_array<FieldT>,
 c2      : pb_variable_array<FieldT> )
-> pb_variable<FieldT>
Wires:
  rsa1 : pb_variable_array<FieldT>, bitLen
  rsa2 : pb_variable_array<FieldT>, bitLen
  eqc1 : pb_variable_array<FieldT>, bitLen 
  eqc2 : pb_variable_array<FieldT>, bitLen   
Gates: 
  EncRSA(key, modulus, m1) 
  Eq rsa1 c1 : Bit
  EncRSA(key, modulus, m2) 
  Eq rsa2 c2 : Bit
And eqc1 eqc2 : Bit
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Demo: Custom Domain Specific Language Example 

ValidRSAPair 
(bitLen  : CInt ,
 m1      : BitString bitLen, 
 m2      : BitString bitLen,
 key     : Bitstring bitLen,
 modulus : BitString bitLen, 
 c1      : BitString bitLen,
 c2      : BitString bitLen )
-> Bit 
And
  (Eq EncRSA(key, modulus, m1) c1) : BitString bitLen
  (Eq EncRSA(key, modulus, m2) c2) : BitString bitLen
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Shared Key and Modulus as a Type

With traditional proofs we have a choice, either supply the key and the modulus that 
encrypted them so the receiver side can manually verify this property, or trust that 
the input was prepared correctly and risk incorrect behavior.

We can encode this proof as the type “RSAPair” above, and generate a zkSNARK 
to capture this property.

type RSAPair = 
RSA(key, modulus, message1) == cipher1 
and 
RSA(key, modulus, message2) == cipher2
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Multiplicatively Homomorphic Property of RSA

If we encrypt two messages with the same key and modulus, the multiplication of 
those two ciphertexts equals the encryption of the multiplication of the plaintexts
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Distributed Verification

Prover 
Key

Verifier
Key

CipherText 1, CipherText 2, 
Private key, Modulus 

Verification Output, Ciphertext 1, Ciphertext 2

m1=7
m1=5 

35

Verifier BinaryProver Binary
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Distributed Verification

Prover 
Key

Verifier
Key

Generated 
Outputs

Transferred 
Outputs

Generated Proof and Public Inputs Generated Proof and Public Inputs 
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Project Roadmap

1. Prototype and test program interoperability
– Manually implement skeleton code in place of zero-knowledge proofs 

to interact with example program

2. Implement constraint related ZKP gadgets 
– Constraints capture type information that is immediately useful to the 

test program

3. Develop and set up prototype demonstrations
– Replace skeleton code with handcrafted ZKP gadgets
– Develop prototype compiler to read type annotations from file and 

generate constraints
4. Benchmark and Evaluate
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Prototype ZKP Compiler
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(Int, 
Bitstring Integer, 
Bitstring Integer, 
Bitstring Integer, 
Bitstring Integer, 
Bitstring Integer, 
Bitstring Integer)

RSAPair

Type-Level Programming Gives Type Safety

Redacted

We can use type level programming to generate input and output types 
for functions from a central type.

(Int, 
PrivInt,
PrivInt,
PrivInt,
PrivInt,
Bitstring Integer,
Bitstring Integer)

ReturnType
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Type-level Haskell Generation Step

type family RetType a where
          GetParam RSAPair = 
               (Int, 
                Bitstring Integer, 
                Bitstring Integer, 
                Bitstring Integer, 
                Bitstring Integer, 
                Bitstring Integer, 
                Bitstring Integer)

instance Name RSAPair where
getName _ = "RSAPair"

type family GetReturn a where
  GetReturn RSAPair = 

              (Int, 
               PrivInt, 
               PrivInt, 
               PrivInt, 
               PrivInt, 
               Bitstring Integer, 
                

Expression Type-Level Haskell

RSAPair : (Int
Priv Bitstring Integer, 
Priv Bitstring Integer, 
Priv Bitstring Integer, 
Priv Bitstring Int, 
Bitstring Int, 
Bitstring Int) 

zkSNARK Type
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Compiler intermediate representations

Language
Flattened  
Language

Circuit 
representation

Libsnark Gadget
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Verification in a program

Type

Type Proof 

Public Inputs 

Prover 
Key

Verifier
Key

Program
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A function to Illustrate Homomorphic Property

encryptMessagePair :: 
Length 
-> Message 
-> Message 
-> PublicKey 
-> Modulus 
-> (Length, CipherText, CipherText)
encryptMessagePair bits m1 m2 key modulus = 
   c1 <- encrypt m1 key modulus
   c2 <- encrypt m2 key modulus
   return (bits, c1, c2)

This function encrypts two messages with the same can modulus, and returns them 
along with the bit width.
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A function to Illustrate Homomorphic Property

multiplyDecryptPair ::  
(Length, CipherText, CipherText) 
-> PrivateKey 
-> Integer 
-> Message
multiplyDecryptPair (bits,c1,c2) key modulus = do
  prod <- (c1 * c2) `mod` modulus
  c3   <- decrypt prod key modulus 
  return c3 

This function multiplies to ciphertext together, then decrypts it with the given key.

Its correct functioning depends on the two ciphertexts having been encrypted with 
the same key and modulus.
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Encryption Property Verified with ZKP

encryptMessagePair :: 
Length 
-> Message 
-> Message 
-> PublicKey 
-> Modulus 
-> IO (Redacted RSAPair)
encryptMessagePair bits m1 m2 key modulus = 
   c1 <- encrypt m1 key modulus
   c2 <- encrypt m2 key modulus
   prepareZKP (bits, m1,m2, key, modulus, c1, c2)

This prepares the ZKP, which generates the proof files and redacts the information 
we don't want the other function to see.
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A function to Illustrate Homomorphic Property

multiplyDecryptPair ::  
(Redacted (RSAPair)) 
-> PrivateKey 
-> Integer 
-> IO Message
multiplyDecryptPair param@(bits,_,_,_,_,c1,c2) key modulus =   
do
  verifyZKP param
  prod <- (c1 * c2) `mod` modulus
  c3   <- decrypt prod key modulus 
  return c3 

We verify the ZKP before multiplying the ciphertexts. If verification fails, 
an error is thrown
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Demo Summary and Challenges

We were able to show an example of this approach using zkSNARKS to verify both 
functions interacting in a program, and programs interacting across a file system.

It relies on the writing of zkSNARK gadgets, which using extant libraries is extremely 
labor-intensive and requires knowledge of esoteric programming techniques.

In order to leverage the Haskell type system this approach requires type level 
Haskell programming, which is considered niche even among advanced Haskell 
programmers.

Can we mitigate these challenges?
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Benchmarks for Demo
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Our function as a circuit
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A redacted circuit with zkSNARKs
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   < 20   1 <
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3

18 4511 1 1

8101 1

A redacted circuit with zkSNARKs

9?6?
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Example. You want to prove that you have beaten Where’s Waldo?
• Traditional Proof: Point to Waldo to demonstrate you know where he is

• Not zero-knowledge!
This kind of proof leaks all information about his location, much more than 
simply that you have knowledge of the location

Zero-Knowledge Proof for Where’s Waldo?
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Zero-knowledge proof for “Where’s Waldo?”
1. Cut out a Waldo shaped hole in a much larger piece of paper
2. Position the hole over Waldo’s location

Zero-Knowledge Proof for Where’s Waldo?

Slide under paper

This precisely obfuscates 
Waldo’s location while 
demonstrating knowledge 
of his whereabouts!

To adversaries, the book underneath could 
hypothetically be in any random orientation
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Completeness vs. Soundness

Typical proof systems have 100% completeness and 100% soundness

Completeness: ℙ[true statement AND verifier accepts] = 1
“Everything true is provable”

Soundness: ℙ[false statement AND verifier rejects] = 1
“False statements aren’t provable”
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Cryptographic Proof Systems

Cryptographic proof systems have variable completeness and 
soundness. For non-interactive zero-knowledge proofs we care about:

(Completeness) ℙ[true statement AND verifier accepts] = 1
“Everything true is provable”

(Soundness) ℙ[false statement AND verifier rejects] = 1 - ε
“Low chance that a proof of a false statement is 
encountered”

We sacrifice minimal amount of soundness (have to break crypto to 
produce counter-example) in order to get valuable proof properties
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Zero-Knowledge Proofs and Verifiable Computation

Zero-knowledge proofs (ZKPs) allow us to prove that a claim IS true 
without revealing WHY it is true, even if the prover is untrusted and 
malicious.
zkSNARKs are special ZKPs that are tiny and non-interactive

O(1)
size

O(n*log(n)^k) 
size

O(n)
size

Inputs:
Logs

Schematics
Program Traces

Signals
Encryption Keys

Attestations
etc.

Outputs:
Results

&
ZK Proof of 

Computational 
Integrity

Homomorphically Encrypted* *with tweaks
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1

a

t0

b

t1

zkSNARK Construction for Program Verification [BCGTV13]

Computation

Arithmetic 
Circuit

R1CS

QAP

LPCP

LIP

zkSNARK

int myFunction(int a) {
int b=a*a-4;
return 3*b+a;

}

π

S • A  *  S • B  =  S • C
1

a

t0

b

t1

0

1

0

0

0

0

1

0

0

0

1

a

t0

b

t1

0

1

0

0

0

Zero Knowledge Added

Succinctness Added

Interactivity Removed

zkSNARK for
Program Integrity 

Proof Representation
Of Program Execution

Rank-1 Constraint System (R1CS):

libsnark
backend

Prover
Binary

Verifier
Binary

libsnark
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Theory Behind ZKPs
(Backup)
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PCPs & Hardness of Approximation

Intuition
Efficient approximation scheme for a problem 
implies that it an easy to create a good enough 
looking “fake” solution (witness)

So,
Hard to approximate

⟺
Hard to create a convincing fake witness that 

appears optimal
⟺

Good witnesses imply that best solutions exist Easy to find Hard to find

← Gap →
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NIZK Overview
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1. Publish homomorphically encrypted building blocks for a program

2. Prover blindly re-assembles them to compute the desired circuit (e.g. an 
evaluation of the PCP circuit) and adding random blinds where appropriate

3. Verifier checks content by simply decrypting

Circuit Evaluation

 

 
 

 


